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The FFT calculation of spherical harmonics, Wigner D matrices and rotation
function has been extended to all angular variables in the AMoRe molecular
replacement software. The resulting code avoids singularity issues arising from
recursive formulas, performs faster and produces results with at least the same
accuracy as the original code. The new code aims at permitting accurate and
more rapid computations at high angular resolution of the rotation function of
large particles. Test calculations on the icosahedral IBDV VP2 subviral particle
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1. Introduction

The rotation function, as defined by Rossmann & Blow (1962),
measures the overlap between one Patterson function (the
target object) and a rotated version of another (the search
object) as a function of the rotation angle. The calculation of
the overlap function can take advantage of spherical harmonic
(SH) representation of the source and target objects if these
are limited to a spherical domain. Using such representation,
the overlap function R(R) (R being a rotation) can be
expressed (Crowther, 1972) as

Lnax !
RR)=2 ¥ G,

1=0 my ,my=—I

Dy, i, (R), )

which is an expansion in terms of the orthonormal Wigner
D functions (the irreducible matrix representations of the
rotation group). The sum truncation limit /, is related to the
angular resolution and is determined by the size and resolu-
tion of the superimposed functions according to the following

formula:

loax = 27b/d ;i (b: radius; d;,: resolution).  (2)

Crowther (1972) showed the computational advantage of the
SH approach in rotational search. If the Euler parametrization
R = R(a, B, y) is used, separation of the three angular vari-
ables occurs, and a simple harmonic dependence for two of
them results:

R(a9 189 V) IX(:) Z B Cinl my ’”1 mz(IB) exp[l(mla + mz)’)]
(©)

This permits the fast calculation of 8 sections of the rotation
function by two-dimensional fast Fourier transform (FFT).

showed that the new code performs on the average 1.5 times faster than the

Evaluation of the reduced Wigner d functions for each B
section is required.

Equation (1) requires the pre-calculation of the coefficients
Cﬁnl m,- For Patterson overlap calculations, the Cfn] m, coeffi-
cients can be efficiently computed using the formulas intro-
duced by Navaza (1993):

Py (1) ——

Z e(target) (source) (4)
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where the coefficients ¢, ,, , are given by
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(F: structure factor; h: angular part of the reciprocal vector h;
Y, ,.: spherical harmonic of degree [ and order m; j;: spherical
Bessel function of order /; b: integration radius; V: unit-cell
volume). These formulas require that SH’s be sampled on a
non-regular angular grid corresponding to the reciprocal-
lattice directions. Alternatively, to speed up calculations, a
regular grid of SH values can be used to extract approximate
values, provided that the grid sampling interval be sufficiently
small.

The evaluation of SH’s and Wigner functions — the former
can be eventually reduced to special restrictions of the Wigner
functions (see §2) — needed for the calculation of the rotation
function are normally carried out using various recursive
relationships (Edmonds, 1957; Courant & Hilbert, 1953;
Altmann & Bradley, 1963; Risbo, 1996; Navaza, 1990).
Recursion formulas, however, have singularities when S is a
multiple of 7, and care should be taken to ensure computa-
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tional stability, especially at high angular resolutions. As an
alternative to recursive formulas, Fourier synthesis is also
employed by several authors from other fields for the calcu-
lation of SH’s (see, for example, Dilts, 1985; Swarztrauber,
1984; Risbo, 1996), though, to our knowledge, only recently
(Kovacs & Wriggers, 2002) has it been proposed for the
calculation of the rotation function in crystallography. Fourier
synthesis has the advantage of avoiding singularities and very
finely sampled values can be rapidly obtained if FFT algor-
ithms are used.

In this paper, we present the implementation of the Fourier
representation of both the SH’s and the reduced Wigner
functions into the rotational search algorithms described
above. The purpose of the work is to speed up the search
procedures and to allow accurate computations of the rotation
function at high angular resolutions. This will provide efficient
algorithms for rotational searches with large particles like
viruses. Two modifications in the search procedure are
presented:

1. An accurate calculation of the coefficients Cf,,lymz is
achieved at high angular resolutions by using FFT algorithms
for SH sampling, avoiding the singularity issues of recursion
formulas.

2. The Wigner d functions are substituted by their Fourier
representation, which introduces a simple harmonic depen-
dence on the B angular variable in the rotation function, thus
allowing the FFT acceleration of all three rotational variables.
This approach is equivalent to the fast rotational matching
algorithm proposed by Kovacs & Wriggers (2002), who
showed that the overlap function of two rotated bodies can be
expressed as a three-dimensional Fourier sum if a rotation is
factorized into the product of two rotations with a fixed angle
B =m/2. We present here a more rapid implementation to
obtain the Wigner function Fourier coefficients.
Implementation into the AMoRe molecular replacement
package (Navaza, 1994) will be described.

2. Background

In this paper, the notation and the normalization conventions
for SH’s and Wigner functions are essentially those found in
Navaza (2001), who refers to formulas reported in the book of
Brink & Satchler (1968). A general introduction to Fourier
analysis and representation theory can be found in Kirillov
(1991).

The fundamental symmetry of a crystal is the periodicity, i.e.
the invariance with respect to a particular group of transla-
tions. This symmetry is quite naturally displayed in terms of
Cartesian coordinates and the basis functions for translations,
i.e. the exponentials exp(27ihx). The vector h of the reciprocal
Bravais lattice labels the irreducible representations of the
translation group, which are one-dimensional. The exponen-
tials constitute a complete set of functions suited to expand
any function that has the same periodicity as the crystal. In
particular, the structure factors are the coefficients of the
expansion of the electron density.

Analogously, spherical coordinates and the concomitant
SH’s are a very natural choice to represent any function
bounded in space and displaying point-group rotational
symmetry. Complex SH’s Y}, — where the integers / and m are
the SH degree and order, respectively (0 <!/<o0;
—Il<m <) - are a complete basis for the irreducible
representations of the infinite group of three-dimensional
rotations, where, for each degree [, the corresponding SH’s
generate a (2/ 4 1)-dimensional space which is rotationally
invariant. When a system of spherical polar coordinates (6, ¢)
is used, separation of variables occurs:

20413 —m)!
4 (I +m)!

1/2

Y60, 9) =1 [ ] Py ,,(cos 6) exp(imgp)
and a simple harmonic dependence on the longitude ¢
appears, while the dependence on the colatitude 6 is related to
the trigonometric associated Legendre functions (Brink &
Satchler, 1968).

The Wigner D functions, which for a given degree / can be
arranged as a square matrix Dﬁ,ll,,,,z of order (2/+ 1) with
indexes m; and m, running from —/ to +I/, constitute the
(irreducible) matrix representations of the rotation operators
in the SH basis. If Euler angles (o, 8, y) are used to param-
etrize rotations, separation of variables occurs and a simple
harmonic dependence on « and y results:

Dinl,mz(a’ IB’ J/) = dfnl,mz(:B) eXp[l(mloz + mzy)]’

while the dependence of the reduced Wigner d functions on
the nodal angle B is related to the Jacobi polynomials
(Courant & Hilbert, 1953).

A simple relation exists between the P,,,(cos6) and the d
functions, as the former are proportional to the functions in
the central column of the d’ matrices:

I+ m)!
(I —m)

1/2

P, (cosf) = |: i| dﬁmo(e).

Therefore, the computation of both SH’s and Wigner func-
tions can be reduced to the computation of the reduced d
functions.

The explicit expression given by Wigner for the d functions
(Brink & Satchler, 1968) is computationally cumbersome and
cannot be effectively implemented as is. Instead, recursive
formulas derived from it — along the degree / and/or the order
my, m, directions of the d-matrix ‘pyramid’ — are normally
used. The literature on the subject is sparse (Edmonds, 1957,
Courant & Hilbert, 1953; Altmann & Bradley, 1963; Risbo,
1996; Navaza, 1990)

Since the d(8) matrices become diagonal when 8 = 0 or 7,
recursive formulas present singularities at these points, and
care must be taken to ensure computational stability around
them. Risbo (1996) proposed a binomial recursion, which he
reported to be stable up to at least / = 360. The binomial
recursion can be reconducted to a nine-term [ — [+1
recursion where each element of degree [ + 1 in the d pyramid
receives contributions from the nine adjacent elements at level
[. Navaza (1990) proposed a three-term monodimensional
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recursion in the m, direction [see also equations (15)-(16) in Bfn],mz,u = i'"z’mlAL,ml Afhmz, @)
Appendix A of the present article]. If computation is carried

out on a logarithmic scale, storing separately the mantissas and
exponents as double-precision and integer numbers, respec-
tively, this recursion has proven to be quite stable at least up to
1 = 1000 for angles greater than 10~° rad. This recursion can
be found implemented in the AMoRe package.

where the index u labels the frequency in S.

Equation (6) shows that the d functions of degree / are (at
least) 27 periodic and band limited, with (2/ 4+ 1) Fourier
components. The following properties hold.

1. Since the d’s are real-valued functions, the hermitian

relationship Bﬁnl’mz,_u = Bl, ,,. holds, and only the (/+1)
non-negative or non-positive frequencies are non-redundant.
3. Methods This is analogous to Friedel’s law which stipulates that the
3.1. FFT calculation of the d functions structure factor obtained by changing the signs of the Miller

indices is equal to the complex conjugate of the original one.

2. Since the d functions are either even or odd, depending
on the parity of (m; — m,), their Fourier components are
either real or pure imaginary numbers, respectively. Thus,
from equation (7), the Fourier coefficients can be computa-

. l .
R(0, B.0) = R(~ .0, )R(0, — 2, 0) tionally stored as real numbers b,, ,, , given by
x R(B,0,0R(0. 3. 0)R(. 0,0), Bongmyn = ()™M A (®)

The expression for the Fourier representation of the d
functions is given by Edmonds (1957), who based it on
unpublished notes by E. Wigner. It can also be found in Risbo
(1996). By factorization of a nodal rotation,

Furthermore, d values need to be sampled over the half-period
interval [0, ) only.

3. Systematic absences are found in the frequencies of the
central column/row of the d matrices (i.e. of the SH associated

and using the corresponding similarity transformation of the
representative D' matrices, one obtains the Fourier decom-
position of the d functions:

, R A ] Legendre functions): from equations (22) and (23), it follows
.y (B) = 0 u;[ iy, (), (5) €xp(iep) that, for dj ,, and d,, ,, all odd frequencies disappear when / is

“ odd, and the same happens to even frequencies when / is even.
= > Bfn] iy, €Xp(iup) 6) In the latter case, the corresponding d functions are 7 periodic.

u=—t The d functions of degree / can therefore be sampled on
N > [ points in the interval [0, ) {or N/2 > [/2 points in the

with the Fourier coefficients given b
& Y interval [0,7/2) when m, =0 and [ is even} using FFT

! _ my—my gl LAY/ b4 i imi i
By = du,m1 (5)du’m2(5) algorithms optimized for. even/odd real functl.ons. In the
present work, we have written a Fortran code linked to the
or, defining the matrix A’ = d'(%), FFTW (version 3.0.1) library of routines (Frigo & Johnson,
Input array (& w2) FFT type | Half Output array (d By Sampled angles 16“ =niN}
o sample o
shift ; ; .
-, even [EHEHE — | mealeven | no H_.__._-_._._‘H_._* B= k- 8 k=012.N
=0 >§ 1 [ i . .
n even W [ W » | mealeven | yes (8- P=tk-12)08, k=12..N
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u=gQ ] 2 ! H ; |
- odd O m-u-uEe 0o ‘;E real odd | mo E’ R .. - E;J B= & all‘ k=12 __(N-1)
el real odd | yes fm e e s nwn Bk k=12.N
! odd i ' i
=0 i i i =
Jf".- even BEEEE 0Oaaa0 ?: real even | no EEEESR ‘ a5-5-E-5 ¢| B= & h|r k=012 .. (N2
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Array elements:

B used
filled with zero and used
O unused

Figure 1
Scheme of the array arrangement used for the FFT d-function calculation.
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1998) for the calculation of the d functions. Fig. 1 shows a
scheme of the different types of routines and array arrange-
ments that can be used.

3.2. Calculation of the Fourier coefficients of the d functions

According to equations (7) and (8), the Fourier coefficients
of the d(pB) functions can be obtained in a straightforward way
by calculating these functions for the particular argument
B = /2. The successive multiplication of the two columns m,
and m, of the resulting A’ matrix gives a real-number repre-
sentation of the dﬁnl,rnz Fourier spectrum. The A matrices
represent a computationally convenient way of storing the
Fourier coefficients, for a given degree /, as a two-dimensional
array (Al ), instead of a three-dimensional array (bﬁnl’mz,u).
Since only (/ 4+ 1) frequencies are relevant, only the bottom
halves (u > 0) of the A matrices need to be calculated.
Furthermore, explicit calculation of the A, coefficients can
be limited to the ‘asymmetric triangle’ 0 < u < m, <[ (which
represents ~ 1/8 of the whole matrix) and then extended by
symmetry (see Appendix A) to the rest of the matrix.

Calculation of the A matrices can be performed by adapting
the available d-matrix recursive formulas for § = m/2. In this
work, we use two two-term recursions in the / direction for the
bottom rows of the matrices and one three-term recursion in
the column direction:

2aA-1\"*
A§,0 = _(2—1) AL},O» (9)

o [ upe-n 71”7
1,m;, (l + mz)(l + m2 _ 1) 1—=1,my—1>
2m
A/ — 2 A[
T =m0+ my D]

(I —m, — DI +m, +2)]"
—[ T—md+m 1) } Apvam,  (11)

(10)

see eq. (9)

|/
'1 see eq. (10)

/:;, seeeq. (11)

e - - ’5, - ¥
ORI U | 1 i

"y

Figure 2

Schematic representation of the recursions used for the calculation of the
A-matrix pyramid. White blocks are calculated explicitly, while dark
blocks can be obtained by symmetry.

with initial condition
Ay =1. (12)

Equations (9), (10) and (12) are easily obtained from the
initialization equation (16), while equation (11) is obtained
from the recursion formula (15). Recursion (11) is the most
prone to error accumulation. In order to improve computa-
tional accuracy, it can be carried out using logarithmic arith-
metic, storing in separate variables the mantissas and
exponents of numbers (Navaza, 1990). Using the above
formulas, the asymmetric triangles of the A matrices can be
calculated recursively using the scheme depicted in Fig. 2.

If matrices of even degree only are needed (which is the
case for the Patterson-correlation rotation function), equa-
tions (9) and (10) can be replaced by three / — [/ + 2 recur-
sions:

r(20 — 1)1 — 3)1"*
Alg = %} A 3o,
o _[@=D@-37"
1,1 — _m} 1-2,1°
N i (1/2)21 = 1)(I — 1)(2l — 3) }1/2
b T 21+ my) (A my — 1)L+ my — 2)(1+ my — 3)

-2
P AVIE P

while maintaining equation (11) and with initial conditions
(I=2):
61/2

2 .
AZ,O - 4>

2 __ 1. 2 __1
4 A2,1 - 2 A2,2 — 4

4

3.3. Three-dimensional FFT calculation of the rotation
function (fast rotational matching)

When equation (3) is modified by the introduction of the
Fourier representation of the Wigner d functions, one obtains
a three-dimensional Fourier expression for the rotation
function:

R(c, B, y)
lmax lmax lmax

= Z Z Z Wml,u,mz exp[i(m1ot + L{ﬂ + mzy)]»

My =—lpax U=—lpax My=—ln,x
(13)

where the rotation-function Fourier coefficients W,’,,l’u_m2 are
given by

A

max
w =Y c B

my,u,my my,my = my,my,u
1=l nin

A

‘max

=y G, AL AL (14)

w,my “u,m,
1=l

‘min

with [, = max(|m,|, |m,|, |u|). Therefore, three-dimensional
FFT algorithms can be used for the rapid evaluation of the

rotation function.
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It is convenient to think of R(w, B, y) as a real periodic
function defined in the Euler coordinate space. The following
properties hold.

« Hermiticity of the Fourier coefficients:

w

—my,—u,—m;

my,u,my "

« According to equation (13), the period of the rotation
function is 27 along the three directions (e, B, y). However, if
the target and search Patterson functions have rotational
symmetry along z of order n, and n, respectively, the peri-
odicity is 2m/n, and 2m/n, along o and y, respectively.
Correspondingly, systematic absences are present in the
rotation-function Fourier spectrum if m; #0modn, or
m, # 0 mod n,.

« Since the rotations («, 8, ¥) and (¢ + 7, —8, y + 7) are
equivalent, only half a period in the g direction is non-
redundant. This equivalence can be considered as a diagonal
glide-plane symmetry placed at 8 = 0 in Euler space. It results,
in Fourier space, in the following parity relationship in the u
direction:

Wml —umy (_1)””7”’2 w

my,u,my
and in some systematic absences in the (m,, m,) plane:

Woiom =0 if  (my —m,) odd.

Using the above properties, the following procedure can be
implemented to conveniently calculate the rotation function
by three-dimensional FFT:

1. Calculate the ‘semi-pyramidal’ array of the real A
matrices:

2<1=<l, [leven
O<uc<l

—I<m<lI

A[

u,m?

as described in §3.2.
2. Calculate the ‘semi-pyramidal’ array of the complex
coefficients:

! _ Ry! - ~IN]
le,mz - (C )ml.mz + l(C )m1»m2’

2 <1< s [ even
0<m <I, m; = 0mod n,
—l<my,<l, m,=0modn,

(where the superscripts R and [ indicate the real and
imaginary components, respectively) using equations (4) and
(5). FFT sampling of SHs can be used to evaluate equation (5),
as described in §3.1.

3. Calculate two non-redundant octants of Fourier coeffi-
cients:

0 En/ll = lmax

0<uc<l,,
-

s
+i Wml Ju,my 0

w = WR

my,u,my my,u,my

max = m, = lmax'

The real and imaginary components of the Fourier coefficients
can be calculated using equation (14) and according to the
following scheme (indices have been omitted for conve-
nience):

(m, — m;) mod 4 WR w!
0 S CRAA Y CIAA
1 ~SCAA S CRAA
2 ~SCRAA =3 C'AA
3 S CIAA - CRAA.

4. Make a three-dimensional hermitian FFT:

hermitian 3D FFT

W’”lv“smz R(Ol, ﬂv )/)
By exploiting the diagonal glide symmetry of the rotation
function, one can restrict the calculation to the non-redundant
interval 0 < 8 < m. Also, if memory limitations require it,
steps 3 and 4 can be carried out in bunches, storing and
retrieving the results from disk.

4. Results

In the present work, we have implemented the Fourier
representation of SH and Wigner functions in the rotational
search procedure of the molecular replacement software
AMoRe.

1. A general-purpose Fortran code has been written for the
calculation of the A matrices and for the FFT sampling of SH
and Wigner functions; the code computes the A matrices using
double-precision or logarithmic double-precision arithmetic.
FFT calculations can be performed using single- or double-
precision arithmetic.

2. SH FFT sampling has been introduced in AMoRe for the
calculation of the coefficients Cfnl,m2~

3. FFT acceleration of the B angular variable for the
calculation of the rotation function, as described in §3.3, has
been introduced in AMoRe.

900
800
700
600
500
400
300
200
100

LI NELI NELI N3N B |

Time (s)

I

® Recursion
® FFT
(Shannon rate ~ 1)

T ] T

1]

0 100 200 300

max
Figure 3
Time performance of d-matrix calculations. Time refers to the cumulate
computation time for all even-degree d matrices (one asymmetric
triangle) up to [/ =1/, Recursive and A-matrix calculations were
performed in double-precision logarithmic mode. FFT calculations were
performed in double-precision mode.
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The developed code has been linked to routines from the
FFTW library, version 3.0.1 (Frigo & Johnson, 1998). In order
to test the AMoRe code performance, self-rotation function
calculations have been carried out using the crystallographic
data of the icosahedral IBDV VP2 subviral particle (Coulibaly
et al., 2005) (PDB ID: 1WCD). Calculations were performed
on a Linux AMD Athlon(tm) MP 2400+ PC with 2 Gb RAM.

4.1. Time performance of the SH and d-function FFT
calculation

Fig. 3 shows a comparison between the recursive and FFT
computation times for d matrices. Calculations were
performed using the highest precision and the minimum
Shannon rate allowed by the code. We will denote as ‘speed
ratio’ the computing time spent when using the recursive
formulas divided by the time spent when using the FFT
approach:

recursion-based calculation time

speed ratio = - -
FFT-based calculation time

A speed ratio between 1.5 and 3.2 was observed for the
cumulate calculation of all even-degree d functions with [,
ranging from 50 to 300. Better results were obtained at
Shannon rates higher than 1 (Fig. 4).

When the calculation was limited to the central column of
the d matrices, in order to obtain the SH’s, the speed of the
FFT calculation was comparable with or better than that of the
recursive calculation for Shannon rates higher than 2. In the
case of the rotation-function Cfﬂl’mz coefficients, which require
a very fine SH sampling, a speed ratio between 1.5 and 2.4 was
observed for the SH calculation at a Shannon rate of ~ 10 and
for [, up to 1000.

The FFT-based computations include an initialization step
where the A matrices and the FFT plans are evaluated. Four
types of FFT plans, whose sizes depend on the Shannon rate

70 : !

o
o
I

i
=]
|

s
(=]
T

Time (s)

® Recursion
m FFT
(I =100)

max

Y]
o
I

Shannon rate

Figure 4

Time performance of d-matrix calculations as a function of the Shannon
rate. Time refers to the cumulate computation time of all even-degree
d matrices (one asymmetric triangle) up to /.. = 100. Recursive and
A-matrix calculations were performed in double-precision logarithmic
mode. FFT calculations were performed in double-precision mode.

and /_,,, need to be evaluated for even-/ calculations (Fig. 1),
and one A matrix for each degree / (up to /,,) needs to be
calculated. The time required for the initialization step
contributes differently to the overall computation time when
one compares the SH (i.e. one d-matrix column) and the whole
d-matrix calculation. This accounts for the lower speed-up
observed for the SH FFT calculation. While for d matrices the
initialization step represented, in the tested cases, less than 5%
of the total computation time, during SH calculations the

initialization step required 50 to 67% of the total time.

4.2. Accuracy of the SH FFT calculation

Accuracy of the SH FFT calculation has been estimated by
calculating the deviation from unity of the norm of the
d-matrix central columns. The norm deviations for the first
sampled angles (the angles closest to zero) at a high Shannon
rate (~ 10) were smaller than 107'° for / up to 1000 (Fig. 5).
These norm deviations are slightly better than those observed
for d values calculated by recursion formulas.

4.3. Calculation of the rotation-function C,, ,, coefficients

using SH FFT values

my

No significant speed improvement during the AMoRe
Cfnl_,mz calculation was observed after the SH recursive algor-
ithm was substituted for the SH FFT calculation. Accuracy of
the calculation seemed to be maintained, as could be seen

from a comparison of the rotational search results (see below).

4.4. Three-dimensional FFT rotation-function calculation

The self-rotation function of the icosahedral IBDV VP2
subviral particle was calculated at different resolution limits
and with different integration radii (Table 1), corresponding to
a SH expansion limit /,, varying from 52 to 178.

o3 .
& o0 oo
57 T F T T F T T T %
[--T.-N.-§ o, [--% [--% e [.-§ [--% [--% Q. a.
5 0
210
S
]
=)
=)
= -12
E n|
ZI(]
@ Recursion
14 ] !
10 ® FFT
| 1 1 1 1 l 1 1 1 1 I

0 500 100C

max

Figure 5

Accuracy of SH calculations. The deviation from unity of the modulus of
the central column of the d matrices is reported as a function of /.. The
values are calculated with respect to the first sampled angle (the angle
closest to zero) at a Shannon rate of ~ 10. Recursive and A-matrix
calculations were performed in double-precision logarithmic mode. FFT
calculations were performed in double-precision mode.
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Table 1
Time performance for the calculation of the self-rotation function of the IBDV VP2 subviral particle.
PDB ID 1WCD
Space group Po, R
Unit cell a=b=2589,c=3473 A
Self-rotation function calculation Complete rotational search (including Cf,,lv,,,z
(using pre-calculated C,’nhmz’s) computation and peak search)
Time (s) Time (s)
using using Speed using using Speed
Lo Nyt b (A) doin (A) 2D FFT 3D FFTi ratio 2D FFTi 3D FFT# ratio
52 72 90 10.0 0.410 0.110 3.73 1.38 1.05 1.31
52 144 90 10.0 1.04 0.445 2.35 222 1.60 1.39
64 72 110 10.0 0.737 0.198 372 2220 1.58 1.39
64 144 110 10.0 1.67 0.549 3.04 335 2.16 1.55
66 72 90 8.0 0.791 0.194 4.08 3.32 2.69 1.24
66 144 90 8.0 1.80 0.517 3.48 455 3.20 1.42
76 90 130 10.0 1.49 0.288 5.19 3.73 239 1.56
76 180 130 10.0 3.46 1.05 329 6.13 3.63 1.69
80 90 110 8.0 1.72 0.367 4.66 5.71 427 1.34
80 180 110 8.0 3.89 1.02 3.83 8.34 5.36 1.56
88 108 90 6.0 2.89 0.495 5.83 13.1 10.7 1.23
88 216 90 6.0 6.55 1.75 3.73 17.6 12.8 1.37
88 108 150 10.0 2.87 0.50 5.76 5.98 342 1.75
88 216 150 10.0 6.54 1.67 3.92 10.5 5.44 1.93
96 108 130 8.0 3.46 0.805 4.30 9.52 6.66 1.43
96 216 130 8.0 7.70 1.95 3.94 14.6 8.62 1.69
106 144 90 5.0 6.33 1.16 5.47 325 277 1.17
106 270 90 5.0 13.5 341 3.96 413 31.7 1.30
108 144 110 6.0 6.76 1.22 5.54 23.6 18.1 1.30
108 270 110 6.0 14.4 347 4.15 32.8 22.0 1.50
110 144 150 8.0 7.21 1.29 5.58 16.1 9.83 1.63
110 270 150 8.0 14.9 3.76 3.96 254 13.9 1.83
128 144 130 6.0 123 2.33 5.26 38.7 289 1.34
128 288 130 6.0 26.6 5.11 522 55.0 335 1.64
130 144 110 5.0 12.8 2.63 4.87 56.3 473 1.19
130 288 110 5.0 27.6 5.47 5.05 733 522 1.41
148 162 150 6.0 244 4.00 6.09 61.8 41.7 1.48
148 324 150 6.0 51.9 8.46 6.17 92.1 49.0 1.88
154 180 130 5.0 28.8 4.93 5.84 97.5 742 1.31
154 360 130 5.0 62.1 10.9 571 135.1 84.2 1.60
178 216 150 5.0 56.6 8.95 6.32 172.6 126.6 1.36
178 432 150 5.0 121.0 20.1 6.04 243.9 144.6 1.69

+ Number of B sample points in [0, 7) # Fourier coefficient calculations carried out at the maximum precision allowed by the code. FFT calculations carried out in single-precision

mode.

In all tested cases, all the NCS axes of the icosahedral
particle could be found. When the results obtained with the
original AMoRe program were compared with those obtained
with the new code, no difference was found in the angular
parameters and height of the corresponding rotation-function
peaks, even when single-precision FFT routines were used,
showing that the new code produced results with the same
accuracy.

Table 1 compares the time performance of the classical two-
dimensional and the new three-dimensional rotational search
procedure applied to the IWCD data. A general improvement
of the calculation speed was observed using 8 samplings
corresponding to Shannon rates between 1 and 2. The time
spent in a complete rotation-function calculation, including
the computation of the Cfﬂhmz coefficients and the peak-search
procedure, resulted in a time divided by a factor of 1.48 on the
average. When using precalculated Cﬁnl,mz coefficients, as
AMoRe often does, the FFT procedure was up to six times
faster, with an average speed ratio of 4.7.

As shown in Table 1, the computation of the C,’ﬂlymz’s is the
most time consuming part of rotation-function calculations.
The use of the FFT technique to calculate the SH’s gives
greater stability and accuracy but no appreciable gain in time.
With stored Cfn]’,nz’s, the rotation function depends on the

resolution only through

molecular size and the
loax = 27b/d ;. [equation (2)] and the chosen Shannon rate

max min
(typically 1.5 in AMoRe). Thus, the results of columns 5 to 7 in
Table 1 are model independent. For smaller structures, smaller
l..’s are often used, and this results in smaller speed ratios
than those reported in Table 1. For example, calculations
performed with [, = 40 resulted in speed ratios of 2.21 and

1.40 using Shannon rates of 1 and 2, respectively.

5. Discussion

We have extended to all angular variables and implemented
into AMoRe the Fourier representation of SH, D matrices and
rotation function. The new code produces results with at least
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the same accuracy as the original code, avoids singularity
issues arising from recursion formulas, and has a better time
performance. Improvement in speed is due essentially to the
three-dimensional FFT rotation function calculation and, in
the tested cases, calculation times were divided by factors
ranging between 1.17 and 1.93.

We have made a comparison between Kovacs & Wriggers’s
(2002) and our three-dimensional FFT rotational search
procedure, and we observed that the two codes perform with
comparable speed, with a slightly better performance of our
code owing to a more efficient planning of the FFT. The speed
improvements they reported are higher than ours, though
using a different set of test data. However, their results were
obtained by comparison with a two-dimensional procedure
that used the rather slow binomial recursion (Risbo, 1996) to
calculate the d matrices, while our two-dimensional results are
based on the much faster recursion formulas proposed by
Navaza (1990).

APPENDIX A
The reduced Wigner d' matrices

The reduced Wigner d'(8) matrices (I =0,1,...,00) are
squared real unitary matrices of order (2/ 4 1), with row and
column indices m,, m, running conventionally from —/ to +1.
The elements df,,hmz (B) are functions of the angular variable S
and can be defined by the following three-term recurrence
relation:

2[m, — (m; +1) cos(B)]
[(1 — my)(I + m, + 1)]'/? sin(B) o1, P)

(= my = D)( +my +2)]"
) 09

iy, (B) =

with initial values (bottom row):

" —(_1\m (2—1)' v
Ao (B) = (=1) [(z—m2>!(1+mz>!}

I—m, I4+m;,
X (sin g) (cos g) . (16)

The d matrices have the following properties.
« Symmetry with respect to the diagonals/centre:

A"y (B) = 1 (B) = (1), (B)- 17)
« Symmetry with respect to the central column/row:

by (BET) = (=1)""d,, . (B)
=(=1)""d",, .(B) (18)
and, for 8 = /2,

by o (/2) = (=1)""d,, ., (7/2)

= (=1)""d",, ,.(7/2). (19)
« Parity:

iy (—B) = (=1)" ", 0 (B). (20)

o B-shift symmetry/periodicity:
dyy o (B+2m)=d,, . (B) Ay

and, for m, or m, = 0 (central row/column),

dy (B + 1) = (=1)dy,,., (). (22)
dy, o(B+ 1) = (=1)'d,,, o(B)- (23)
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